Retroviruses are RNA-containing viruses that use the enzyme reverse transcriptase to copy their RNA into the DNA of a host cell. Retroviruses have been isolated from a variety of vertebrate species, including humans, other mammals, reptiles, and fish. The family Retroviridae includes such important human pathogens as human immunodeficiency virus (HIV) and human Tlymphotropic virus (HTLV), the causes of AIDS and adult T-cell leukemia respectively. The study of this virus family has led to the discovery of oncogenes, resulting in a quantum advance in the field of cancer genetics. Retro-viruses are also valuable research tools in molecular biology and gene therapy.
Characteristics
The classification of retroviruses is based on comparisons of the size of the genome and morphologic characteristics (see Table 1). The genomic RNA of retroviruses is single-stranded and possesses "positive" polarity similar to that found in messenger RNA (mRNA). Virions (virus particles) contain two 5′ ("five prime"), end-linked, identical copies of the genome RNA, and are therefore said to be diploid.
Table 1
Genus | Distinguishing feature | Example | Host | Diseases/pathologies |
Alpha-retrovirus | genome <8kb;> | avian leukosis virus | birds | malignancies |
Beta-retrovirus | intracytoplasmic assembly | mouse mammary tumor virus | mice | mammary and ovarian |
(B- or D-type) | carcinoma; lymphomas | |||
Gamma-retrovirus | genome <> | murine leukemia virus | mice | malignancies |
at cell membrane | ||||
Delta-retrovirus | genomes <> | bovine leukemia virus | cows | malignancies |
Epsilon-retrovirus | assembly at cell membrane; | walleye dermal sarcoma virus | fish | solid tumors |
hosts: fish | ||||
Lentivirus | genome > bar-shaped | human immunodeficiency virus | humans | immunodeficiency and |
concentric core | neurologic disease | |||
Spumavirus | assembly as intracyto- | chimpanzee foamy spumavirus | simians | none apparent |
plasmic particles |
Three genes are universally present in the genomes of retroviruses that are capable of replication, such as murine (mouse) leukemia virus. The gag (group antigen) gene encodes proteins that make up the nucleocapsid of the virus as well as a matrix layer, the two of which surround the RNA. The pol gene (a type of polymerase) encodes reverse transcriptase, which copies the RNA into DNA, and integrase, which integrates the DNA into the host chromosome. Depending on the species, pol can also encode protease, a protein that cleaves the initial multiprotein products of retrovirus translation to make functional proteins. Some retroviruses have incorporated viral oncogene sequences. An example of this is reticuloendotheliosis virus strain T. The genome of complex retroviruses, such as HTLV, can contain several other genes that regulate genome expression or replication and are not present in simple retroviruses.
Reverse Transcriptase
Retroviruses follow the same general steps in their replication cycles that are common to other viruses. The steps that differ from other viruses involve the retroviral reverse transcriptase, an enzyme discovered simultaneously by Howard Temin and David Baltimore in 1970. (Temin and Baltimore were awarded the Nobel Prize for this work in 1975.) Reverse transcriptase converts the single-stranded, positive-polarity RNA genome of retrovirus into double-stranded DNA, thereby reversing the typical flow of genetic information (which is from DNA to mRNA). The DNA copy is transported into the nucleus of the host cell, circularized, and integrated into the host chromosome.
This DNA copy of the retrovirus genome is referred to as the provirus or proviral DNA. The genomes of most vertebrates contain abundant numbers of incomplete and complete proviruses (endogenous retroviruses) that appear to represent remnants of past retroviral infections in germline cells. Proviruses contain structures called long terminal repeats (LTR) at each end. The LTRs contain promoter elements and transcriptional start sites that enable the retroviral genes to be expressed. They can also affect the expression of nearby cellular genes.
Retrovirus Replication Cycle
There are seven steps in the replication cycle of the retrovirus. The first step is attachment, in which the retrovirus uses one of its glycoproteins to bind to one or more specific cell-surface receptors on the host cell. Some retroviruses also employ a secondary receptor, referred to as the co-receptor. Some retroviral receptors and coreceptors have been identified. For example, CD4 and various members of the chemokine receptor family on human T cells (a type of white blood cell) serve as the HIV receptors and coreceptors.
The second and third steps are penetration and uncoating, respectively. Retroviruses penetrate the host cell by direct fusion of the virion envelope with the plasma membrane of the host. Continuation of this fusion process results in the release of the viral capsid directly into the host cell's cytoplasm, where it is partially disrupted.
Step four is replication, which occurs after the retrovirus has undergone partial uncoating. At this stage, the RNA genome is converted by reverse transcriptase into double-stranded DNA. Reverse transcriptase has three enzymatic activities: RNA-directed DNA polymerase makes one DNA strand, DNA-directed DNA polymerase makes the complementary strand, and RNAse H degrades the viral RNA strand. Reverse transcription is primed by a cellular transfer RNA (tRNA) that is packaged into retrovirus virions. It concludes with the synthesis of a double-stranded copy of the retroviral genome that is termed the "provirus," or proviral DNA.
This proviral DNA is circularized and transported to the host cell's nucleus, where it is integrated, apparently at random, into the genome by means of the retroviral enzyme called integrase. Following integration, the provirus behaves like a set of cellular genes, while the LTRs function as promoters that begin transcription back into mRNA. This transcription is carried out by RNA polymerases in the host cell. Transcription of the proviral DNA is also the means of generating progeny RNA. Viral proteins are made in the cytoplasm of the host cell by cellular ribosomes.
The next step (step five) is termed "assembly," in which retrovirus capsids are assembled in an immature form at various locations in the host cell. This is followed by an "egress" stage, in which the envelope proteins of retroviruses are acquired by budding from the plasma membrane (cell surface) of the host. Finally, step seven is "maturation." In this step, the Gag and Pol proteins of the retrovirus are cleaved by the retroviral protease, thus forming the mature and infectious form of the virus.
Consequences of Retroviral Infection
Retroviral infection can result in several different outcomes for the virus and the cell. Retroviruses are capable of inducing immunosuppressive, autoimmune, and neurological illnesses. Some retroviruses, such as the lentiviruses and the spumaviruses, are capable of directly killing cells. Cytopathic (cell-killing) effects in infected T cells and cells in the brain may account for the profound immune deficiencies and neurological diseases induced by HIV and related lentiviruses.
Retroviruses are also capable of inducing latent infections, in which the virus is dormant, or persistent infections, in which low levels of the virus are continuously produced. These capabilities explain the life-long nature of retroviral infections, and render the diseases induced by these pathogens extremely difficult to treat.
Retroviruses and Cancer
Retroviruses are among several types of viruses that can induce cancer in the host organism. So-called slowly transforming viruses are exemplified by human T-lymphotropic virus (HTLV), which causes leukemia (a type of blood cancer) in humans. These viruses induce malignancy by a process called insertional mutagenesis. The initial event is thought to be retroviral integration near, and subsequent activation of, a cellular oncogene (c-onc). Examples of c-onc include genes for growth factors, protein kinases, and transcription factors. Harold Varmus and Michael Bishop won the Nobel Prize for physiology or medicine in 1989 for their contributions to the discovery of oncogenes.
When a malignancy is triggered, tumors appear only after a long latent period of months or years, and these tumors are typically clonal in origin. That is, they arise by the rare transformation of a single cell. HTLV-1 is highly prevalent in people living in Japan, the Caribbean, and Africa, areas where approximately one percent of adults are infected. About one to three percent of infected individuals will eventually develop adult T-cell leukemia after an incubation period, which is usually several decades long. HTLV stimulates T-cell proliferation that could favor mutational events leading to cell transformation.
Acutely transforming retroviruses contain a viral oncogene (v-onc) and induce polyclonal cancers (that is, many different cancer cells are derived in multiple transforming events) at high efficiency within a short time frame (weeks). The v-onc are derived by incorporation and modification (that is, by deletion of introns, mutations, and other such processes) of host-cell oncogenes. The v-onc are often expressed in great quantity, due to the highly active viral LTRs. Most acutely transforming retroviruses are replication-defective, because incorporation of the oncogene deletes an essential gene or genes. They therefore require a helper virus to propagate. An exception is Rous sarcoma virus, whose genome retains enough of the structural gene sequences to remain capable of replication.
Bibliography
Varmus, Harold E. "Form and Function of Retroviral Proviruses." Science 216, no. 4548 (1982): 812-820.
Weinberg, Robert A. "How Cancer Arises." Scientific American 275, no. 3 (1996): 62-70.
—Robert Garry
No comments:
Post a Comment